Porcine granulocyte-macrophage colony-stimulating factor improves the in vitro development of cloned porcine embryos.
نویسندگان
چکیده
We examined the effects of porcine granulocyte-macrophage colony-stimulating factor (pGM-CSF) on the in vitro development of porcine embryos produced by somatic cell nuclear transfer (SCNT) for the first time. We evaluated the effects of pGM-CSF on SCNT-derived blastocyst formation and investigated gene expression. A total of 522 cloned embryos in 6 replicates were treated with 10 ng/ml pGM-CSF during in vitro culture (IVC). This treatment significantly (P<0.05) increased blastocyst formation and total cell number in blastocysts compared with the control (12.3% and 41.4 vs. 9.0% and 34.7, respectively). However, there was no effect on cleavage rate. The numbers of cells in the inner cell mass and trophectoderm were significantly higher in the pGM-CSF treatment group (6.0 and 43.0, respectively) compared with the control (4.4 and 31.9, respectively). Treatment with 10 ng/ml pGM-CSF significantly increased POU5F1 and Cdx2 mRNA expression in blastocysts. In addition, Bcl-2, Dnmt1 and proliferating cell nuclear antigen (PCNA) mRNA expression were upregulated in blastocysts in the pGM-CSF supplemented group compared with the control. These results suggest that pGM-CSF improves the quality and developmental viability of porcine SCNT embryos by regulating transcription factor expression.
منابع مشابه
Improvement in Development and Quality of 8 Cell Mouse Embryos in Presence of Granulocyte Macrophage-Colony Stimulating Factor
Purpose: Granulose Macrophage-Colony Stimulating Factor (GM-CSF) is a lympho- heamatopoietic actor, secreted in the reproductive system. Murine pre- implantation embryos express GM-CSF receptors. In his study, the capacity of eight cell mouse embryos was studied in the presence and absence of GM-CSF. Materials and Methods: Female NMRI mice were super ovulated using Pregnant Mare Serum gonadotr...
متن کاملComparison of T7- and Lac-Based Systems for the Periplasmic Expression of Human Granulocyte Macrophage Colony Stimulating Factor in Escherichia coli
متن کامل
Expression and Secretion of Human Granulocyte Macrophage-Colony Stimulating Factor Using Escherichia coli Enterotoxin I Signal Sequence
With the aim of the secretion of human granulocyte macrophage-colony stimulating factor (hGM-CSF) in Escherichia coli, hGM-CSF cDNA was fused in-frame next to the signal sequence of ST toxin (ST-I) of exteroxigenic E. coli, containing 53 or 19 amino acids of signal peptide. The fused STsig::hGM-CSF coding fragments were inserted into a T7-based expression plasmid. The recombinant plasmids were ...
متن کاملThe Expression of Human Granulocyte Macrophage Colony Stimulating Factor by Heat-Induction in Escherichia coli
A self-regulated high-copy number plasmid containing chloramphenicol resistant gene, for the production of recombinant proteins under the regulation of bacteriophage ?pL promoter, was constructed. The designed 5024 base pair expression plasmid contained a heat sensitive repressor cI857 coding gene to regulate the function of ?pL promoter under heat shock induction. Using the constructed vector,...
متن کاملImprovement in the blastocyst quality and efficiency of putative embryonic stem cell line derivation from porcine embryos produced in vitro using a novel culturing system.
Porcine embryonic stem cells (pESCs) have great potential for application in translational biomedical research, including xenotransplantation and disease models. Obtaining high-quality blastocysts is the most important factor in the isolation and colonization of primary ESCs and the establishment of ESC lines. In pigs, in vitro-derived blastocysts have a limited cell number compared to in vivo-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of veterinary medical science
دوره 74 9 شماره
صفحات -
تاریخ انتشار 2012